
MANAGEMENT’S GUIDE
UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

INTRODUCTION: THE BIG DATA DILEMMA

In recent years, the amount of data available to
companies has skyrocketed. According to IBM, 2.5 billion
gigabytes (GB) of data are created every day.1 With this
massive influx comes new opportunities for companies
to deliver greater customer experiences and get an edge
on their competition. To this end, enterprises have been
investing in big data platforms such as Hadoop, Spark
and NoSQL databases. The greater challenge, though, is
not only collecting and storing data, but being able to
derive meaningful insights from it, and operationalizing
those insights to create business value.

Data science and machine learning have emerged
as the keys to unlocking this value. Unlike traditional
business analytics, which focus on known values and
past performance, data science aims to identify hidden
patterns in order to drive new innovations. One of its
main attributes is analyzing unstructured data, such as
speech, images and text, as well as streaming data—such
as sensor data and online behavior—which can be
processed and acted upon in real time. From there,
machine learning takes data mining to the next level by
complementing human decisions with the ability to take
actions automatically after detecting patterns.

Behind these efforts are the programming languages
used by data science teams to clean up and prepare
data, write and test algorithms, build statistical
models, and translate into consumable applications or
visualizations. In this regard, Python stands out as the
language best suited for all areas of the data science and
machine learning framework.

Designed as a flexible general purpose language, Python
is widely used by programmers and easily learnt by
statisticians. Its extensive libraries make it a powerful tool
for statistical analysis, and it is routinely used to integrate
models into web applications and production databases.
Beyond conventional data analysis, Python is the leading
language for machine learning, changing how businesses
are operating in every industry.

This guide provides a summary of Python’s attributes
in each of these areas, as well as considerations
for implementing Python to drive new insights and
innovation from big data.

PYTHON VS. OTHER LANGUAGES

When it comes to which language is best for data science,
the short answer is that it depends on the work you are
trying to do. Python and R are suited for data science
functions, while Java is the standard choice for integrating
data science code into large-scale systems. However,
Python challenges Java in that respect, and offers
additional value as a tool for building web applications.
Recently, Go has emerged as an up and coming
alternative to the three major languages, but is not yet as
well supported as Python.

In practice, data science teams use a combination of
languages to play to the strengths of each one, with
Python and R used in varying degrees. Below is a brief
comparison table highlighting each language in the
context of data science.

1 Matthew Wall, “Big Data: Are you ready for blast-off?”, BBC News: http://www.bbc.com/news/business-26383058 1

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

Python R Java Go

Core Strengths Easy to use, multi-
purpose, large community

Made for statistics, large
community

High-performance, wide
enterprise adoption

Modern architecture, clean
reliable code, lightweight,
fast

Ideal Use Cases - Data analysis
- Visualization
- Exploratory analysis
- Data engineering
- Rapid prototyping
- Machine learning
- Web applications
- Workflow integration

- Data analysis
- Visualization
- Exploratory analysis

Production systems - Production systems
- Data analysis, data
engineering, machine
learning (emerging)
- Web applications
- Microservices

Types of Users - Data scientists
- Data engineers
- Machine learning
engineers
- Web app developers

- Data scientists
- Data engineers

Systems developers - Data scientists, data
engineers, machine learning
engineers (emerging)
- Web app developers
- Systems developers

Learning Curve Accessible, easy to learn Easy for statisticians.
Steep, can be learned by
programmers

Difficult, only
for professional
programmers

Steep, can be learned by
programmers

Data Science Ecosystem Robust, growing (PyPI) Robust, mature (CRAN) Lacks coverage Early, growing

Performance Reasonable, fast when
using optimized libraries
such as Intel

Slow Fast Fast, concurrent

Deployment Many deployment tools/
integrations

Difficult, requires
compiler

Simple; Java Virtual
Machine (JVM) ubiquity

Simple (compiled
executable)

Python

Python offers a strong combination of R’s data analysis
capabilities with general purpose speed and scalability.
Data scientists who have a basic understanding of code
can use Python effectively for day-to-day analyses, while
developers can use Python to migrate code off of data
scientists’ machines into applications or production
systems.

Although the Python ecosystem is still catching up to R,
Python goes beyond R in areas such as machine learning
and natural language processing. R’s functionality can

also be accessed within Python using the rpy2 library,
giving users the best of both worlds. Python also
supports exploratory analytics via Jupyter Notebook
(formerly IPython Notebook)–a web application for
sharing, explaining and iterating code.

From a deployment standpoint, architectural approaches
such as containerization and microservices help ease
the complexities of Python’s various dependencies. As
companies move towards microservices, they can use
Python for the data-driven components of the system
while existing components written in Java or other
languages continue to operate uninterrupted.

2

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

R

Developed by and for statisticians, R is best suited for
exploratory data analysis and visualization. Statisticians
can use R to express their thoughts and ideas naturally
without having a programming background. R is
supported by a large and active community, and the
CRAN repository contains thousands of packages and
readily usable tests to perform almost any type of data
analysis.

Because R is designed mainly for standalone computing,
however, it is slower than Python and other languages,
and is limited to working with datasets small enough to
fit into memory. It also has a steep learning curve for
those who are not trained statisticians. Data scientists
will often use R for desktop prototyping and then use a
more flexible language like Python or Java to deploy to
production.

Java

Known for its performance and scalability, Java is often
the preferred choice for enterprise infrastructure. It
has a vast ecosystem and developer base, owing to its
widespread enterprise adoption. As a compiled language,
it is generally faster than interpreted languages, but for
data science tasks, it is often slower than Python where
exclusive libraries optimize Python’s performance.

Compared to Python and R, Java is the least suited for
statistical analysis and visualization. Although there
are packages to add some of these functions, they are
not as supported as those available for Python or R.
Java’s highly object-oriented language structure also
make it extremely difficult to learn for non-professional

programmers.

Scala, which runs on the JVM, is increasingly being used
for machine learning and building high-level algorithms.
However, like Java, it is not easily accessible to most data
scientists due to its programmer-focused structure and
lack of supporting libraries for data analysis.

Go

Recently, Go has emerged as an alternative to Python
and R as a solution to issues around deployment and
maintenance of data science code in production. This
is because Go promotes more efficient, better quality,
error-free code that is easily integrated into a company’s
existing architecture.2 Popular packages like Jupyter
Notebooks have also now been extended to support Go.

The main drawback to using Go for data science right
now is that its ecosystem is underdeveloped compared
to Python and R, missing essential tools for arrays and
visualization. As a relatively new language, Go is quickly
gaining traction for microservices and web applications.
Keep your eye on this language for its potential
productivity gains in data science.

DATA ANALYSIS WITH PYTHON

Aside from its flexibility and ease of use, Python’s
extensive libraries make it a powerful tool for data
preparation, analysis and visualization compared to other
languages. Along with foundational packages NumPy
(for multi-dimensional arrays), SciPy (library of numerical
algorithms) and Matplotlib (plotting and visualization), the
following libraries give Python enhanced productivity and
integration with big data sources.

32 Daniel Whitenack, “Data Science Gophers”, O’Reilly: https://www.oreilly.com/ideas/data-science-gophers

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

Complementing Your R Workforce With Python:
rpy2

Python and R are often used together for their
complementary capabilities. Data scientists may use R
for its statistical functions and then wrap their model
in a Python application that has a variety of additional
features. Or they may use Python for analysis and call
specialized packages only found in R. rpy2 provides an
interface to access R within Python and is helpful for
these use cases.

For those familiar with R, they can use rpy2 to learn some
Python while thinking about their problem in R terms,
and then express it in Python very easily. Those who are
not familiar with either can use rpy2 to learn about R
and Python at the same time, gaining the power of both
languages.3

However, since rpy2 is calling the R libraries underneath,
it is limited to working with data that fits into desktop or
server memory. Analyzing large sets of data requires the
use of frameworks such as Hadoop and HDF5, which are
able to bring in data as you need it and push it out as you
don’t.

Connecting to Big Data Platforms

Python has all the libraries to connect to the various
types of databases most organizations now use.
This includes traditional SQL databases (i.e. mySQL,
Microsoft SQL, Oracle), NoSQL databases (i.e. MongoDB,
Cassandra, Redis), file systems (i.e. Hadoop), and
streaming data (i.e. Kafka).

Aside from stored data, one of the big challenges
companies face is how to deal with huge amounts of
streaming data coming in from sources such as sensors,
web feeds and market transactions. Analysis of streaming
data can take a few forms. On one hand, companies
can process streams of data and store them on disk
for analysis and reporting as needed. Alternatively,
companies may need to process and respond to data in
real time (since that is when the data is most valuable).
Examples of this include monitoring for service outages,
making website recommendations and doing real-time
price calculations.

For these purposes, Python connects to platforms that
handle real-time data feeds, such as Kafka. Kafka has a
variety of use cases for managing high-volume activities.
For example, LinkedIn uses Kafka for activity stream
data and operational metrics, while Netflix employs it for
real-time monitoring and event processing.4 Kafka is also
a key component in Kubernetes, since log aggregation
is crucial when deploying thousands of application
instances at scale.

Python’s ability to integrate and pull data from disparate
sources and formats, both static and streamed, makes
it extremely valuable as a means of generating return
on investment (ROI) on an organization’s big data
infrastructure.

3 Tom Radcliffe, “R vs. Python: A False Dichotomy”, ActiveState Blog: https://www.activestate.com/blog/2016/02/r-vs-python-false-dichotomy
4 Kafka website: https://kafka.apache.org/powered-by

4

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

Algorithm and
Model Building

›› Hadoop

›› SQL Server

›› mySQL

›› MongoDB

›› Redis

›› HDF5

›› Pandas
(data prep)

›› Luigi (batch jobs)

›› Dask
(parallel computing)

›› Airflow
(batch, monitoring)

Fundamentals

›› NumPy

›› SciPy

›› SymPy

›› scikit-learn

Machine/Deep Learning

›› TensorFlow

›› Theano

›› Keras

›› Lasagne

›› NLKT
(natural language)

›› Intel MKL
(speed optimization)

›› Matplotlib
(visualization, plotting)

›› scikit-image
(image processing)

›› Bokeh
(visualization in
modern browsers)

›› Seaborn
(statistical
visualization)

›› Build into web app /
(micro) services / APIs

›› Integrate into cloud
services
(AWS, Google)

›› Deploy on production
systems

Figure 1. Sample of Python’s tools and libraries for the data science workflow.

Preparing Messy, Missing and Unlabelled Data

Before any meaningful data analysis can take place, data
must be cleaned up and organized into a useable format.
Data preparation often involves labelling, filling in missing
values and filtering outliers. Although it is essential to
ensure accurate and reliable analysis, data preparation
is considered a time consuming process, accounting for
up to 80% of the work of data scientists. Python has a
number of packages that facilitate the process of data
preparation, helping data scientists focus more time on
high value work.

One of these packages is Pandas, which brings the
fundamental concept of data frames to Python. Data

frames, previously unique to the R language, carry along
entity labels as rows and headers in a matrix format. This
allows data scientists to focus on analysis work while
the data frames automate the “bookkeeping” of the
metadata.5 In addition, Pandas provides features such
as missing data estimation, adding and deleting columns
and rows, and handling time series. Pandas is useful for
those who who prefer to work in Python, but prefer the R
syntax, and offers the advantage of being able to call out
to large datasets.

When it comes to working with data from various
sources, packages such as Luigi, Airflow and Dask help
with building data pipelines, managing workflow and

5 Tom Radcliffe, “Pandas: Framing the Data”, ActiveState Blog: https://www.activestate.com/blog/2017/05/pandas-framing-data

Data Access Data VisualizationData Prep Operationalize
Models

5

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

scaling up and scaling out analytics. These tools handle
much of the complexity that arises as data science
teams grow, move faster and build on an evolving data
infrastructure, allowing them to keep their momentum
on projects.

More Minds are Better than One: Jupyter (Formerly
IPython) Notebook

Part of what makes Python great for data science is that it
supports exploratory and interactive programming. Data
scientists can easily share their code and annotations
with colleagues, as well as experiment with code and see
the results as they go along.

To start with, IPython adds an interactive command shell
to Python which provides a number of development
enhancements. One of these enhancements is
Jupyter Notebook, a browser-based tool for authoring
documents (notebooks) which combine code with
explanatory text, mathematics, computations, diagrams
and other media. Data scientists can use notebooks to
keep their analysis and observations in one place and
share them with colleagues or the community.

Notebooks are useful as a way to troubleshoot problems,
since they allow others to easily see the steps one
went through to try to solve them. They have also
become popular as a medium for knowledge sharing.
Many notebooks for data science are published and
maintained on Github.

The other aspect of Jupyter Notebook is that it provides
a browser-based REPL (Read-Eval-Print Loop). This
allows users to enter an expression and evaluate the
results immediately. For example, a data scientist can

enter “import Pandas”, create variables and get an
output without having to compile or run the code. The
availability of REPL within Python allows for instantaneous
mathematical calculations, algorithm exploration and fast
prototyping.

MACHINE LEARNING WITH PYTHON

The rise of big data has led to significant advances in
artificial intelligence. Machine learning—the practice
of using algorithms to train programs to not only
recognize patterns in data, but to learn and take action
when exposed to new data—has existed for many
years as an approach to AI. Recently, though, thanks
to the convergence of practically infinite data, storage,
processing power and GPUs, we are now able to feed
massive amounts of data through a system to train it.
This has enabled the development of complex, multi-
layered learning systems, called neural networks, creating
the field of “deep learning”.

Deep learning has led to the growth of a number of AI
capabilities, including image recognition (i.e. recognizing
objects or patterns in photographs) and natural language
processing (i.e. summarizing text or recognizing speech).
Its applications are far-reaching, from automatic stock
trading and customer sentiment analysis to autonomous
vehicles, optimized equipment usage, and new
discoveries in healthcare, pharmaceuticals and other
sciences.

Deep learning initiatives are primarily driven by open
source languages. Machine learning workflows typically
involve pre-processing to clean up the data, learning
stages in which libraries of data are fed through a system
to hone its pattern recognition, and testing of the results

6

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

on independent data—followed by deployment if the
tests are successful.

Python, in particular, is the most popular language
for machine and deep learning. Python packages like
Pandas and the Natural Learning Toolkit (NLTK) help
with the pre-processing. TensorFlow, Theano and Keras,
as well as scikit-learn, provide the algorithms, additional
libraries, computational power and user-friendly control
to develop the learning stages, and deployment is simply
a matter of packaging the model once it’s running well in
testing.

Here is a look at some of the major Python packages in
the machine learning workflow.

Processing and Analyzing Human Language: NLTK

Critical to the discussion of machine and deep learning is
the ability to analyze unstructured data, such as natural
language. While understanding language makes up the
majority of human activities, the ability to process human
language into meaningful information is an incredibly
difficult task for machines. Nuances such as context,
slang, misspellings and phrasing do not easily fit into a
pre-defined database format. With the help of machine
learning, natural language processing (NLP) is able to
break language down into digestible units.

NLP applications are everywhere. Common examples are
voice recognition software, search auto-completions and
customer service chatbots. One important NLP function
is summarization, the ability to summarize text such as
news articles or research papers into executive briefs.
Another example is sentiment analysis. By aggregating
and summarizing social media posts, organizations can

gage customer sentiment of their products or services,
as well as indicators of what is driving positive or negative
sentiment.

One of the most widely used NLP libraries is Python’s
Natural Language Toolkit (NLTK). NLTK provides essential
functions such as tokenization (extracting key words and
phrases from content), stemming (i.e. grouping words like
happy, happiness and happier) and creating parse trees,
which are tree diagrams that reveal linguistic structure
and word dependencies. NLTK provides over 50
corpora6—repositories of names, words and phrases—as
well as numerous algorithms and cookbooks, which
would all be exceedingly difficult to build in-house.

Training AI Engines, Google Style: TensorFlow

Created by Google, TensorFlow is the most popular
foundational library for building deep learning models. It
provides the framework to train complex neural networks
and is the AI engine that powers many of Google’s
operations, such as search ranking, image classification,
drug discovery and NLP services like language translation
and voice recognition. It is also open source, allowing
enterprises to leverage the power created by machine
learning researchers at Google to build their own neural
networks with their own data.

Since its introduction two years ago, TensorFlow has
been a sensation. It was the “most forked” project on
GitHub in 20157 and currently has been forked over
28,000 times and has over 60,000 stars. TensorFlow is
also closely aligned with Python, having been built on
Python and C++. Although its API is available for C++,
Haskell, Java and Go, it is primarily intended for Python as
a bridge to the underlying C++ engine.

6 NLTK Documentation: http://www.nltk.org/
7 James Vincent, “Google has given its open-source machine learning software a big upgrade”, The Verge:
https://www.theverge.com/2016/4/13/11420144/google-machine-learning-tensorflow-upgrade

7

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

TensorFlow users include companies such as Airbnb,
Airbus, Snapchat and Qualcomm8. One notable use case
is UK online supermarket Ocado, which uses TensorFlow
to route robots around its warehouses, improve
demand forecasting and recommend items to add to
customers’ online shopping carts9. Ocado built their
system in six months using Python, C++ and Kubernetes
with TensorFlow—a project initiated by weather storms
highlighting the need to prioritize emails in their contact
centers based on their content rather than on a first-
come, first-serve basis.

Enabling Faster, Large-Scale Computational
Processing

Machine and deep learning require a great deal of
processing power. Theano is a Python library that
enables fast numerical computation by optimizing
mathematical expressions. It is effectively a compiler that
takes your structures and turns them into highly efficient
code using multi-array (NumPy-like) syntax, native C
code and a host of other optimizations, getting as much
performance as possible out of CPUs and GPUs.

Theano is written in Python and has a Python interface. It
was developed in 2007 at the University of Montreal, and
was one the first libraries of its kind, and is considered an
industry standard for the advancement of deep learning.

The Intel® Machine Kernel Library (MKL) provides
another set of optimization libraries for math processing
and neural network routines. Developed for science,
engineering and financial applications, Intel MKL

provides multi-threaded and vectorized functions that
maximize performance of NumPy, SciPy, Theano and
other computational libraries when running on Intel or
compatible multi-core processors. Estimates range from
two to ten times speedups on individual workstations,
and much higher as more cores are applied to the
model10. Since Intel MKL utilizes C and Fortran, it is
compatible with many existing linear algebra libraries and
offers Python performance comparable to C or C++.

Going from Idea to Result Faster with Keras

Keras is a user-friendly layer that can be used over top of
either TensorFlow or Theano, both of which can be a little
low-level for many deep learning use cases. It provides
an easier way to build deep learning models, and is
designed with the belief, “Being able to go from idea to
result with the least possible delay is key to doing good
research11.”

While Theano and TensorFlow give fine-grained control
over their underlying learning engines, Keras makes it
easy to rapidly explore ideas. Keras might not be what
you would use in production, but for exploratory deep
learning it makes it extremely easy to get started quickly
and do a rapid evaluation of different approaches to a
problem. Just because Keras is user-friendly does not
mean it’s simple, though: it supports advanced machine
learning algorithms like recurrent neural networks and
noise layers.

8 TensorFlow website: https://www.tensorflow.org/
9 ComputerWorldUK, “What is TensorFlow, and how are businesses using it?”
http://www.computerworlduk.com/open-source/what-is-tensorflow-how-are-businesses-using-it-3658374/
10 Performance benchmarks available on Intel MKL website: https://software.intel.com/en-us/mkl/features/benchmarks
11 Keras Documentation: https://keras.io/

8

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

9

Open Source vs. Commercial Tools

One of Python’s great strengths is its open source
ecosystem. Python libraries are constantly emerging and
advancing based on the contributions of the community,
which drives more innovation than can be provided by
any one company. While some commercial Python-based
platforms offer easy-to-use collaboration or visualization
tools, customers can find themselves locked into a
vendor-specific toolset. In contrast, the open source
Python universe gives data scientists the flexibility to grab
the right tool for the job at any time and run with it.

One example of open source innovation is TensorFlow,
which has exploded in community contributions since
its release as an open source library by Google in 2015.
PyTables offers a separate example of open source
synergy. Released in 2003 as a way to manage large
amounts of data, PyTables has grown in tandem with
HDF5, which started much later as part of the big data
boom. Both examples demonstrate the value of open
source in evolving with constantly changing business
needs.

Staffing

Data scientists are notoriously hard to find and expensive
to hire. As part of a multi-pronged approach to building
data science teams, companies are retooling and
training data scientists from within the organization.
Implementing Python provides benefits for training and
recruitment, such as employee growth opportunities,
faster results from ramping up data science efforts in
conjunction with training, and easier hiring of additional
staff.

Data analysts familiar with R can learn Python with
relative ease due to its low learning curve and
frameworks like rpy2. Since Python can connect to all the
data sources organizations use, data scientists-in-training
can start mining big data for insights while learning on
the job.

In addition, aligning with the open source Python
ecosystem allows organizations to recruit skilled staff
from a larger candidate pool. By bringing in people who
are already experienced with Python, organizations can

RECOMMENDATIONS

The combination of flexibility and extensive libraries make Python the ideal language for data science and machine
learning. So how do you get started with Python for your data science initiatives? You can download the default
Python implementation (CPython), install the core packages for numerical and scientific computing—NumPy, SciPy
and Matplotlib—and start exploring. Or, to make life easier, you can try an alternative Python implementation such as
ActivePython with these libraries and many more pre-packaged.

In either case, implementing Python beyond a few internal machines or on production systems brings up a number
of considerations. These include which Python distribution to standardize on, setup and configuration time, staffing,
support and security requirements. Each of these factors depends on your organization’s specific needs.

Here is a look at these key considerations.

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

12 Madison Moore, SD Times, “Black Duck audit highlights risk of open-source security vulnerabilities”
http://sdtimes.com/black-duck-audit-highlights-risk-open-source-security-vulnerabilities/
13 Gartner, “Gartner Says It’s Not Just About Big Data; It’s What You Do With It: Welcome to the Algorithmic Economy”
http://www.gartner.com/newsroom/id/3142917

10

benefit from faster onboarding and consequently, faster
time to market.

Getting Started

Although open source Python offers a wide selection
of tools and libraries, setting up individual user
environments can take a significant amount of time and
resources. High-value staff can end up wasting days on
the low-value work of installing and configuring packages
before they are able to start writing algorithms.

To solve this challenge, specialized Python distributions
come precompiled with the most popular open source
packages for data science, including the SciPy stack
and machine learning libraries. By using a precompiled
distribution, data science and application development
teams can stay focused on productivity, rather than
having to hack together and maintain all the components
they need.

Technical Support

Solving technical issues for open source Python
implementations is a challenge. Aside from
troubleshooting issues internally, organizations must
resort to posting issues on public forums such as
Stack Overflow, which can take days or weeks to get a
response, if they get one at all. This can be impractical for
time-sensitive or critical issues where downtime is not an
option.

On top of that, many organizations are hesitant to reveal
their intellectual property in a public forum, where
questions on specific algorithms or machine learning
packages could easily expose competitive advantages.

Based on these factors, commercial support could be a
worthwhile or necessary investment.

Licensing and Security

Licence compliance risks are surprisingly common in
commercial applications. According to a recent Black
Duck report, up to 85% of audited code bases were
found to be out of compliance with open source license
terms12, exposing organizations to potentially costly
legal challenges. To address this problem, certain
commercial Python providers offer full license reviews
of the packages included in their distributions, as well
as legal indemnification to protect against potential IP
infringement lawsuits arising from the use of third-party
software.

Often times, open source components are added directly
to code bases with security vulnerabilities present.
According to Black Duck, more than 60% of audited
applications contained open-source vulnerabilities.
With hundreds of open source packages in various
ecosystems, and organizations’ lack of oversight over
these components, it is easy for data engineers or
data scientists to accidentally download vulnerabilities,
unbeknownst to their IT departments.

Commercial Python distributions can provide greater
security, since the packages are generally reviewed and
maintained by the commercial provider. When using
a precompiled distribution, you can check with the
provider to ensure that all included packages are vetted
for security vulnerabilities, that the latest secure versions
of packages are included, and that all packages are
monitored for security updates on an ongoing basis.

UNLOCKING THE POWER OF
DATA SCIENCE & MACHINE
LEARNING WITH PYTHON

11

CONCLUSION: BECOMING AN ALGORITHMIC BUSINESS

As companies continue to invest in big data, the issue is becoming less about the data itself, but rather how the data
is used to create competitive products and services. According to Gartner, “Companies will be valued not just on their
big data, but on the algorithms that turn that data into actions and impact customers13”.

Python is the fundamental tool for this purpose, serving as a common language for the multi-disciplinary field of
data science. It allows data scientists to interrogate data from disparate sources, developers to turn those insights
into applications, and systems engineers to deploy on any infrastructure, whether on-premise or in the cloud. With
Python, companies are able to get the most ROI out of their existing investments in big data.

Companies are not only maximizing their use of data, but transforming into “algorithmic businesses” with Python as
the leading language for machine learning. Whether it’s automatic stock trading, discoveries of new drug treatments,
optimized resource production or any number of applications involving speech, text or image recognition, machine
and deep learning are becoming the primary competitive advantage in every industry.

The time is now for companies to get started on data science initiatives if they have not already. Introducing
Python into their technology stack is an important step, but companies should consider factors such as support
requirements, staffing plans, licensing compliance and security. By addressing these needs early on, data science
teams can focus on unlocking the power of their data and driving innovation forward.

ABOUT ACTIVEPYTHON

ActivePython is a leading Python distribution used by large enterprises, government and community developers. With
over 300 of the top open source packages included for data science, machine learning, web application and general
Python development, ActivePython delivers proven open source software with enterprise-level security and support.
ActivePython is made by ActiveState, a founding member of the Python Software Foundation, trusted by millions of
developers and 97% of Fortune-1000 companies.

Getting started with ActivePython for data science is easy. Your team can start writing algorithms for free with
Community Edition, and learn more about commercial options for use in production at www.activestate.com

ABOUT ACTIVESTATE
ActiveState, the Open Source Languages Company, believes that enterprises gain a competitive advantage when they are able to quickly create, deploy, and efficiently manage software solutions
that immediately create business value, but they face many challenges that prevent them from doing so. The Company is uniquely positioned to help address these challenges through our
experience with enterprises, people and technology. ActiveState is proven for the enterprise: More than two million developers and 97% of Fortune-1000 companies use ActiveState’s end-to-end
solutions to develop, distribute, and manage their software applications. Global customers like Bank of America, CA, Cisco, HP, Lockheed Martin and Siemens trust ActiveState to save time, save
money, minimize risk, ensure compliance, and reduce time to market.

© 2017 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveState Perl Dev Kit®, ActiveState Tcl Dev Kit®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™ and The Open Source Languages Company™ are all trademarks of ActiveState.

ActiveState Software Inc.
business-solutions@activestate.com

Phone: +1.778.786.1100
Fax: +1.778.786.1133

Toll-free in North America:
1.866.631.4581

