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INTRODUCTION: THE BIG DATA DILEMMA 

In recent years, the amount of data available to 
companies has skyrocketed. According to IBM, 2.5 billion 
gigabytes (GB) of data are created every day.1 With this 
massive influx comes new opportunities for companies 
to deliver greater customer experiences and get an edge 
on their competition. To this end, enterprises have been 
investing in big data platforms such as Hadoop, Spark 
and NoSQL databases. The greater challenge, though, is 
not only collecting and storing data, but being able to 
derive meaningful insights from it, and operationalizing 
those insights to create business value.

Data science and machine learning have emerged 
as the keys to unlocking this value. Unlike traditional 
business analytics, which focus on known values and 
past performance, data science aims to identify hidden 
patterns in order to drive new innovations. One of its 
main attributes is analyzing unstructured data, such as 
speech, images and text, as well as streaming data—such 
as sensor data and online behavior—which can be 
processed and acted upon in real time. From there, 
machine learning takes data mining to the next level by 
complementing human decisions with the ability to take 
actions automatically after detecting patterns.

Behind these efforts are the programming languages 
used by data science teams to clean up and prepare 
data, write and test algorithms, build statistical 
models, and translate into consumable applications or 
visualizations. In this regard, Python stands out as the 
language best suited for all areas of the data science and 
machine learning framework. 

Designed as a flexible general purpose language, Python 
is widely used by programmers and easily learnt by 
statisticians. Its extensive libraries make it a powerful tool 
for statistical analysis, and it is routinely used to integrate 
models into web applications and production databases. 
Beyond conventional data analysis, Python is the leading 
language for machine learning, changing how businesses 
are operating in every industry. 

This guide provides a summary of Python’s attributes 
in each of these areas, as well as considerations 
for implementing Python to drive new insights and 
innovation from big data.

PYTHON VS. OTHER LANGUAGES 

When it comes to which language is best for data science, 
the short answer is that it depends on the work you are 
trying to do. Python and R are suited for data science 
functions, while Java is the standard choice for integrating 
data science code into large-scale systems. However, 
Python challenges Java in that respect, and offers 
additional value as a tool for building web applications. 
Recently, Go has emerged as an up and coming 
alternative to the three major languages, but is not yet as 
well supported as Python.

In practice, data science teams use a combination of 
languages to play to the strengths of each one, with 
Python and R used in varying degrees. Below is a brief 
comparison table highlighting each language in the 
context of data science.

1 Matthew Wall, “Big Data: Are you ready for blast-off?”, BBC News: http://www.bbc.com/news/business-26383058 1
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Python R Java Go

Core Strengths Easy to use, multi-
purpose, large community

Made for statistics, large 
community

High-performance, wide 
enterprise adoption

Modern architecture, clean 
reliable code, lightweight, 
fast 

Ideal Use Cases - Data analysis
- Visualization
- Exploratory analysis
- Data engineering
- Rapid prototyping
- Machine learning
- Web applications
- Workflow integration

- Data analysis
- Visualization
- Exploratory analysis

Production systems - Production systems 
- Data analysis, data 
engineering, machine 
learning (emerging)
- Web applications
- Microservices

Types of Users - Data scientists
- Data engineers
- Machine learning 
engineers
- Web app developers

- Data scientists
- Data engineers

Systems developers - Data scientists, data 
engineers, machine learning 
engineers (emerging)
- Web app developers
- Systems developers

Learning Curve Accessible, easy to learn Easy for statisticians. 
Steep, can be learned by 
programmers

Difficult, only 
for professional 
programmers

Steep, can be learned by 
programmers

Data Science Ecosystem Robust, growing (PyPI) Robust, mature (CRAN) Lacks coverage Early, growing

Performance Reasonable, fast when 
using optimized libraries 
such as Intel

Slow Fast Fast, concurrent

Deployment Many deployment tools/
integrations

Difficult, requires 
compiler

Simple; Java Virtual 
Machine (JVM) ubiquity

Simple (compiled 
executable)

Python

Python offers a strong combination of R’s data analysis 
capabilities with general purpose speed and scalability. 
Data scientists who have a basic understanding of code 
can use Python effectively for day-to-day analyses, while 
developers can use Python to migrate code off of data 
scientists’ machines into applications or production 
systems.

Although the Python ecosystem is still catching up to R, 
Python goes beyond R in areas such as machine learning 
and natural language processing. R’s functionality can 

also be accessed within Python using the rpy2 library, 
giving users the best of both worlds. Python also 
supports exploratory analytics via Jupyter Notebook 
(formerly IPython Notebook)–a web application for 
sharing, explaining and iterating code.

From a deployment standpoint, architectural approaches 
such as containerization and microservices help ease 
the complexities of Python’s various dependencies. As 
companies move towards microservices, they can use 
Python for the data-driven components of the system 
while existing components written in Java or other 
languages continue to operate uninterrupted.
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R

Developed by and for statisticians, R is best suited for 
exploratory data analysis and visualization. Statisticians 
can use R to express their thoughts and ideas naturally 
without having a programming background. R is 
supported by a large and active community, and the 
CRAN repository contains thousands of packages and 
readily usable tests to perform almost any type of data 
analysis.

Because R is designed mainly for standalone computing, 
however, it is slower than Python and other languages, 
and is limited to working with datasets small enough to 
fit into memory. It also has a steep learning curve for 
those who are not trained statisticians. Data scientists 
will often use R for desktop prototyping and then use a 
more flexible language like Python or Java to deploy to 
production.

Java

Known for its performance and scalability, Java is often 
the preferred choice for enterprise infrastructure. It 
has a vast ecosystem and developer base, owing to its 
widespread enterprise adoption. As a compiled language, 
it is generally faster than interpreted languages, but for 
data science tasks, it is often slower than Python where 
exclusive libraries optimize Python’s performance.

Compared to Python and R, Java is the least suited for 
statistical analysis and visualization. Although there 
are packages to add some of these functions, they are 
not as supported as those available for Python or R. 
Java’s highly object-oriented language structure also 
make it extremely difficult to learn for non-professional 

programmers. 

Scala, which runs on the JVM, is increasingly being used 
for machine learning and building high-level algorithms. 
However, like Java, it is not easily accessible to most data 
scientists due to its programmer-focused structure and 
lack of supporting libraries for data analysis.

Go

Recently, Go has emerged as an alternative to Python 
and R as a solution to issues around deployment and 
maintenance of data science code in production. This 
is because Go promotes more efficient, better quality, 
error-free code that is easily integrated into a company’s 
existing architecture.2 Popular packages like Jupyter 
Notebooks have also now been extended to support Go.

The main drawback to using Go for data science right 
now is that its ecosystem is underdeveloped compared 
to Python and R, missing essential tools for arrays and 
visualization. As a relatively new language, Go is quickly 
gaining traction for microservices and web applications. 
Keep your eye on this language for its potential 
productivity gains in data science.

DATA ANALYSIS WITH PYTHON

Aside from its flexibility and ease of use, Python’s 
extensive libraries make it a powerful tool for data 
preparation, analysis and visualization compared to other 
languages. Along with foundational packages NumPy 
(for multi-dimensional arrays), SciPy (library of numerical 
algorithms) and Matplotlib (plotting and visualization), the 
following libraries give Python enhanced productivity and 
integration with big data sources.

32 Daniel Whitenack, “Data Science Gophers”, O’Reilly: https://www.oreilly.com/ideas/data-science-gophers
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Complementing Your R Workforce With Python: 
rpy2

Python and R are often used together for their 
complementary capabilities. Data scientists may use R 
for its statistical functions and then wrap their model 
in a Python application that has a variety of additional 
features. Or they may use Python for analysis and call 
specialized packages only found in R. rpy2 provides an 
interface to access R within Python and is helpful for 
these use cases.

For those familiar with R, they can use rpy2 to learn some 
Python while thinking about their problem in R terms, 
and then express it in Python very easily. Those who are 
not familiar with either can use rpy2 to learn about R 
and Python at the same time, gaining the power of both 
languages.3

However, since rpy2 is calling the R libraries underneath, 
it is limited to working with data that fits into desktop or 
server memory. Analyzing large sets of data requires the 
use of frameworks such as Hadoop and HDF5, which are 
able to bring in data as you need it and push it out as you 
don’t.

Connecting to Big Data Platforms

Python has all the libraries to connect to the various 
types of databases most organizations now use. 
This includes traditional SQL databases (i.e. mySQL, 
Microsoft SQL, Oracle), NoSQL databases (i.e. MongoDB, 
Cassandra, Redis), file systems (i.e. Hadoop), and 
streaming data (i.e. Kafka).

Aside from stored data, one of the big challenges 
companies face is how to deal with huge amounts of 
streaming data coming in from sources such as sensors, 
web feeds and market transactions. Analysis of streaming 
data can take a few forms. On one hand, companies 
can process streams of data and store them on disk 
for analysis and reporting as needed. Alternatively, 
companies may need to process and respond to data in 
real time (since that is when the data is most valuable). 
Examples of this include monitoring for service outages, 
making website recommendations and doing real-time 
price calculations. 

For these purposes, Python connects to platforms that 
handle real-time data feeds, such as Kafka. Kafka has a 
variety of use cases for managing high-volume activities. 
For example, LinkedIn uses Kafka for activity stream 
data and operational metrics, while Netflix employs it for 
real-time monitoring and event processing.4 Kafka is also 
a key component in Kubernetes, since log aggregation 
is crucial when deploying thousands of application 
instances at scale. 

Python’s ability to integrate and pull data from disparate 
sources and formats, both static and streamed, makes 
it extremely valuable as a means of generating return 
on investment (ROI) on an organization’s big data 
infrastructure.

3 Tom Radcliffe, “R vs. Python: A False Dichotomy”, ActiveState Blog: https://www.activestate.com/blog/2016/02/r-vs-python-false-dichotomy
4 Kafka website: https://kafka.apache.org/powered-by
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Algorithm and 
Model Building

›› Hadoop

›› SQL Server

›› mySQL

›› MongoDB

›› Redis

›› HDF5

›› Pandas  
(data prep)

›› Luigi (batch jobs)

›› Dask  
(parallel computing)

›› Airflow  
(batch, monitoring)

Fundamentals

›› NumPy

›› SciPy

›› SymPy

›› scikit-learn

Machine/Deep Learning

›› TensorFlow

›› Theano

›› Keras

›› Lasagne

›› NLKT  
(natural language)

›› Intel MKL  
(speed optimization)

›› Matplotlib  
(visualization, plotting)

›› scikit-image  
(image processing)

›› Bokeh  
(visualization in 
modern browsers)

›› Seaborn  
(statistical 
visualization)

›› Build into web app / 
(micro) services / APIs

›› Integrate into cloud 
services  
(AWS, Google)

›› Deploy on production 
systems

Figure 1. Sample of Python’s tools and libraries for the data science workflow.

Preparing Messy, Missing and Unlabelled Data

Before any meaningful data analysis can take place, data 
must be cleaned up and organized into a useable format. 
Data preparation often involves labelling, filling in missing 
values and filtering outliers. Although it is essential to 
ensure accurate and reliable analysis, data preparation 
is considered a time consuming process, accounting for 
up to 80% of the work of data scientists. Python has a 
number of packages that facilitate the process of data 
preparation, helping data scientists focus more time on 
high value work.

One of these packages is Pandas, which brings the 
fundamental concept of data frames to Python. Data 

frames, previously unique to the R language, carry along 
entity labels as rows and headers in a matrix format. This 
allows data scientists to focus on analysis work while 
the data frames automate the “bookkeeping” of the 
metadata.5 In addition, Pandas provides features such 
as missing data estimation, adding and deleting columns 
and rows, and handling time series. Pandas is useful for 
those who who prefer to work in Python, but prefer the R 
syntax, and offers the advantage of being able to call out 
to large datasets.

When it comes to working with data from various 
sources, packages such as Luigi, Airflow and Dask help 
with building data pipelines, managing workflow and 

5 Tom Radcliffe, “Pandas: Framing the Data”, ActiveState Blog: https://www.activestate.com/blog/2017/05/pandas-framing-data

Data Access Data VisualizationData Prep Operationalize 
Models
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scaling up and scaling out analytics. These tools handle 
much of the complexity that arises as data science 
teams grow, move faster and build on an evolving data 
infrastructure, allowing them to keep their momentum 
on projects.

More Minds are Better than One: Jupyter (Formerly 
IPython) Notebook

Part of what makes Python great for data science is that it 
supports exploratory and interactive programming. Data 
scientists can easily share their code and annotations 
with colleagues, as well as experiment with code and see 
the results as they go along.

To start with, IPython adds an interactive command shell 
to Python which provides a number of development 
enhancements. One of these enhancements is 
Jupyter Notebook, a browser-based tool for authoring 
documents (notebooks) which combine code with 
explanatory text, mathematics, computations, diagrams 
and other media. Data scientists can use notebooks to 
keep their analysis and observations in one place and 
share them with colleagues or the community.

Notebooks are useful as a way to troubleshoot problems, 
since they allow others to easily see the steps one 
went through to try to solve them. They have also 
become popular as a medium for knowledge sharing. 
Many notebooks for data science are published and 
maintained on Github.

The other aspect of Jupyter Notebook is that it provides 
a browser-based REPL (Read-Eval-Print Loop). This 
allows users to enter an expression and evaluate the 
results immediately. For example, a data scientist can 

enter “import Pandas”, create variables and get an 
output without having to compile or run the code. The 
availability of REPL within Python allows for instantaneous 
mathematical calculations, algorithm exploration and fast 
prototyping.

MACHINE LEARNING WITH PYTHON

The rise of big data has led to significant advances in 
artificial intelligence. Machine learning—the practice 
of using algorithms to train programs to not only 
recognize patterns in data, but to learn and take action 
when exposed to new data—has existed for many 
years as an approach to AI. Recently, though, thanks 
to the convergence of practically infinite data, storage, 
processing power and GPUs, we are now able to feed 
massive amounts of data through a system to train it. 
This has enabled the development of complex, multi-
layered learning systems, called neural networks, creating 
the field of “deep learning”. 

Deep learning has led to the growth of a number of AI 
capabilities, including image recognition (i.e. recognizing 
objects or patterns in photographs) and natural language 
processing (i.e. summarizing text or recognizing speech). 
Its applications are far-reaching, from automatic stock 
trading and customer sentiment analysis to autonomous 
vehicles, optimized equipment usage, and new 
discoveries in healthcare, pharmaceuticals and other 
sciences.

Deep learning initiatives are primarily driven by open 
source languages. Machine learning workflows typically 
involve pre-processing to clean up the data, learning 
stages in which libraries of data are fed through a system 
to hone its pattern recognition, and testing of the results 

6
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on independent data—followed by deployment if the 
tests are successful. 

Python, in particular, is the most popular language 
for machine and deep learning. Python packages like 
Pandas and the Natural Learning Toolkit (NLTK) help 
with the pre-processing. TensorFlow, Theano and Keras, 
as well as scikit-learn, provide the algorithms, additional 
libraries, computational power and user-friendly control 
to develop the learning stages, and deployment is simply 
a matter of packaging the model once it’s running well in 
testing.

Here is a look at some of the major Python packages in 
the machine learning workflow.

Processing and Analyzing Human Language: NLTK

Critical to the discussion of machine and deep learning is 
the ability to analyze unstructured data, such as natural 
language. While understanding language makes up the 
majority of human activities, the ability to process human 
language into meaningful information is an incredibly 
difficult task for machines. Nuances such as context, 
slang, misspellings and phrasing do not easily fit into a 
pre-defined database format. With the help of machine 
learning, natural language processing (NLP) is able to 
break language down into digestible units.

NLP applications are everywhere. Common examples are 
voice recognition software, search auto-completions and 
customer service chatbots. One important NLP function 
is summarization, the ability to summarize text such as 
news articles or research papers into executive briefs. 
Another example is sentiment analysis. By aggregating 
and summarizing social media posts, organizations can 

gage customer sentiment of their products or services, 
as well as indicators of what is driving positive or negative 
sentiment.

One of the most widely used NLP libraries is Python’s 
Natural Language Toolkit (NLTK). NLTK provides essential 
functions such as tokenization (extracting key words and 
phrases from content), stemming (i.e. grouping words like 
happy, happiness and happier) and creating parse trees, 
which are tree diagrams that reveal linguistic structure 
and word dependencies. NLTK provides over 50 
corpora6—repositories of names, words and phrases—as 
well as numerous algorithms and cookbooks, which 
would all be exceedingly difficult to build in-house.

Training AI Engines, Google Style: TensorFlow

Created by Google, TensorFlow is the most popular 
foundational library for building deep learning models. It 
provides the framework to train complex neural networks 
and is the AI engine that powers many of Google’s 
operations, such as search ranking, image classification, 
drug discovery and NLP services like language translation 
and voice recognition. It is also open source, allowing 
enterprises to leverage the power created by machine 
learning researchers at Google to build their own neural 
networks with their own data.

Since its introduction two years ago, TensorFlow has 
been a sensation. It was the “most forked” project on 
GitHub in 20157 and currently has been forked over 
28,000 times and has over 60,000 stars. TensorFlow is 
also closely aligned with Python, having been built on 
Python and C++. Although its API is available for C++, 
Haskell, Java and Go, it is primarily intended for Python as 
a bridge to the underlying C++ engine.

6 NLTK Documentation: http://www.nltk.org/
7 James Vincent, “Google has given its open-source machine learning software a big upgrade”, The Verge:  
https://www.theverge.com/2016/4/13/11420144/google-machine-learning-tensorflow-upgrade
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TensorFlow users include companies such as Airbnb, 
Airbus, Snapchat and Qualcomm8. One notable use case 
is UK online supermarket Ocado, which uses TensorFlow 
to route robots around its warehouses, improve 
demand forecasting and recommend items to add to 
customers’ online shopping carts9. Ocado built their 
system in six months using Python, C++ and Kubernetes 
with TensorFlow—a project initiated by weather storms 
highlighting the need to prioritize emails in their contact 
centers based on their content rather than on a first-
come, first-serve basis.

Enabling Faster, Large-Scale Computational 
Processing

Machine and deep learning require a great deal of 
processing power. Theano is a Python library that 
enables fast numerical computation by optimizing 
mathematical expressions. It is effectively a compiler that 
takes your structures and turns them into highly efficient 
code using multi-array (NumPy-like) syntax, native C 
code and a host of other optimizations, getting as much 
performance as possible out of CPUs and GPUs. 

Theano is written in Python and has a Python interface. It 
was developed in 2007 at the University of Montreal, and 
was one the first libraries of its kind, and is considered an 
industry standard for the advancement of deep learning.

The Intel® Machine Kernel Library (MKL) provides 
another set of optimization libraries for math processing 
and neural network routines. Developed for science, 
engineering and financial applications, Intel MKL 

provides multi-threaded and vectorized functions that 
maximize performance of NumPy, SciPy, Theano and 
other computational libraries when running on Intel or 
compatible multi-core processors. Estimates range from 
two to ten times speedups on individual workstations, 
and much higher as more cores are applied to the 
model10. Since Intel MKL utilizes C and Fortran, it is 
compatible with many existing linear algebra libraries and 
offers Python performance comparable to C or C++.

Going from Idea to Result Faster with Keras

Keras is a user-friendly layer that can be used over top of 
either TensorFlow or Theano, both of which can be a little 
low-level for many deep learning use cases. It provides 
an easier way to build deep learning models, and is 
designed with the belief, “Being able to go from idea to 
result with the least possible delay is key to doing good 
research11.”

While Theano and TensorFlow give fine-grained control 
over their underlying learning engines, Keras makes it 
easy to rapidly explore ideas. Keras might not be what 
you would use in production, but for exploratory deep 
learning it makes it extremely easy to get started quickly 
and do a rapid evaluation of different approaches to a 
problem. Just because Keras is user-friendly does not 
mean it’s simple, though: it supports advanced machine 
learning algorithms like recurrent neural networks and 
noise layers.

8 TensorFlow website: https://www.tensorflow.org/
9 ComputerWorldUK, “What is TensorFlow, and how are businesses using it?”  
http://www.computerworlduk.com/open-source/what-is-tensorflow-how-are-businesses-using-it-3658374/
10 Performance benchmarks available on Intel MKL website: https://software.intel.com/en-us/mkl/features/benchmarks
11 Keras Documentation: https://keras.io/
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Open Source vs. Commercial Tools

One of Python’s great strengths is its open source 
ecosystem. Python libraries are constantly emerging and 
advancing based on the contributions of the community, 
which drives more innovation than can be provided by 
any one company. While some commercial Python-based 
platforms offer easy-to-use collaboration or visualization 
tools, customers can find themselves locked into a 
vendor-specific toolset. In contrast, the open source 
Python universe gives data scientists the flexibility to grab 
the right tool for the job at any time and run with it. 

One example of open source innovation is TensorFlow, 
which has exploded in community contributions since 
its release as an open source library by Google in 2015. 
PyTables offers a separate example of open source 
synergy. Released in 2003 as a way to manage large 
amounts of data, PyTables has grown in tandem with 
HDF5, which started much later as part of the big data 
boom. Both examples demonstrate the value of open 
source in evolving with constantly changing business 
needs.

Staffing

Data scientists are notoriously hard to find and expensive 
to hire. As part of a multi-pronged approach to building 
data science teams, companies are retooling and 
training data scientists from within the organization. 
Implementing Python provides benefits for training and 
recruitment, such as employee growth opportunities, 
faster results from ramping up data science efforts in 
conjunction with training, and easier hiring of additional 
staff.

Data analysts familiar with R can learn Python with 
relative ease due to its low learning curve and 
frameworks like rpy2. Since Python can connect to all the 
data sources organizations use, data scientists-in-training 
can start mining big data for insights while learning on 
the job. 

In addition, aligning with the open source Python 
ecosystem allows organizations to recruit skilled staff 
from a larger candidate pool. By bringing in people who 
are already experienced with Python, organizations can 

RECOMMENDATIONS

The combination of flexibility and extensive libraries make Python the ideal language for data science and machine 
learning. So how do you get started with Python for your data science initiatives? You can download the default 
Python implementation (CPython), install the core packages for numerical and scientific computing—NumPy, SciPy 
and Matplotlib—and start exploring. Or, to make life easier, you can try an alternative Python implementation such as 
ActivePython with these libraries and many more pre-packaged.

In either case, implementing Python beyond a few internal machines or on production systems brings up a number 
of considerations. These include which Python distribution to standardize on, setup and configuration time, staffing, 
support and security requirements. Each of these factors depends on your organization’s specific needs.

Here is a look at these key considerations.



UNLOCKING THE POWER OF 
DATA SCIENCE & MACHINE 
LEARNING WITH PYTHON

12 Madison Moore, SD Times, “Black Duck audit highlights risk of open-source security vulnerabilities”  
http://sdtimes.com/black-duck-audit-highlights-risk-open-source-security-vulnerabilities/
13 Gartner, “Gartner Says It’s Not Just About Big Data; It’s What You Do With It: Welcome to the Algorithmic Economy”  
http://www.gartner.com/newsroom/id/3142917
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benefit from faster onboarding and consequently, faster 
time to market.

Getting Started

Although open source Python offers a wide selection 
of tools and libraries, setting up individual user 
environments can take a significant amount of time and 
resources. High-value staff can end up wasting days on 
the low-value work of installing and configuring packages 
before they are able to start writing algorithms. 

To solve this challenge, specialized Python distributions 
come precompiled with the most popular open source 
packages for data science, including the SciPy stack 
and machine learning libraries. By using a precompiled 
distribution, data science and application development 
teams can stay focused on productivity, rather than 
having to hack together and maintain all the components 
they need.

Technical Support

Solving technical issues for open source Python 
implementations is a challenge. Aside from 
troubleshooting issues internally, organizations must 
resort to posting issues on public forums such as 
Stack Overflow, which can take days or weeks to get a 
response, if they get one at all. This can be impractical for 
time-sensitive or critical issues where downtime is not an 
option.

On top of that, many organizations are hesitant to reveal 
their intellectual property in a public forum, where 
questions on specific algorithms or machine learning 
packages could easily expose competitive advantages. 

Based on these factors, commercial support could be a 
worthwhile or necessary investment.

Licensing and Security 

Licence compliance risks are surprisingly common in 
commercial applications. According to a recent Black 
Duck report, up to 85% of audited code bases were 
found to be out of compliance with open source license 
terms12, exposing organizations to potentially costly 
legal challenges. To address this problem, certain 
commercial Python providers offer full license reviews 
of the packages included in their distributions, as well 
as legal indemnification to protect against potential IP 
infringement lawsuits arising from the use of third-party 
software.

Often times, open source components are added directly 
to code bases with security vulnerabilities present. 
According to Black Duck, more than 60% of audited 
applications contained open-source vulnerabilities. 
With hundreds of open source packages in various 
ecosystems, and organizations’ lack of oversight over 
these components, it is easy for data engineers or 
data scientists to accidentally download vulnerabilities, 
unbeknownst to their IT departments. 

Commercial Python distributions can provide greater 
security, since the packages are generally reviewed and 
maintained by the commercial provider. When using 
a precompiled distribution, you can check with the 
provider to ensure that all included packages are vetted 
for security vulnerabilities, that the latest secure versions 
of packages are included, and that all packages are 
monitored for security updates on an ongoing basis.
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CONCLUSION: BECOMING AN ALGORITHMIC BUSINESS

As companies continue to invest in big data, the issue is becoming less about the data itself, but rather how the data 
is used to create competitive products and services. According to Gartner, “Companies will be valued not just on their 
big data, but on the algorithms that turn that data into actions and impact customers13”.

Python is the fundamental tool for this purpose, serving as a common language for the multi-disciplinary field of 
data science. It allows data scientists to interrogate data from disparate sources, developers to turn those insights 
into applications, and systems engineers to deploy on any infrastructure, whether on-premise or in the cloud. With 
Python, companies are able to get the most ROI out of their existing investments in big data.

Companies are not only maximizing their use of data, but transforming into “algorithmic businesses” with Python as 
the leading language for machine learning. Whether it’s automatic stock trading, discoveries of new drug treatments, 
optimized resource production or any number of applications involving speech, text or image recognition, machine 
and deep learning are becoming the primary competitive advantage in every industry.

The time is now for companies to get started on data science initiatives if they have not already. Introducing 
Python into their technology stack is an important step, but companies should consider factors such as support 
requirements, staffing plans, licensing compliance and security. By addressing these needs early on, data science 
teams can focus on unlocking the power of their data and driving innovation forward. 

ABOUT ACTIVEPYTHON

ActivePython is a leading Python distribution used by large enterprises, government and community developers. With 
over 300 of the top open source packages included for data science, machine learning, web application and general 
Python development, ActivePython delivers proven open source software with enterprise-level security and support. 
ActivePython is made by ActiveState, a founding member of the Python Software Foundation, trusted by millions of 
developers and 97% of Fortune-1000 companies.

Getting started with ActivePython for data science is easy. Your team can start writing algorithms for free with 
Community Edition, and learn more about commercial options for use in production at www.activestate.com
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